

RISC-V opportunity, innovation, and collaboration igniting adoption

Andrea Gallo VP of Technology, RISC-V International andrea@riscv.org

September 2024

RISC-V is the industry standard ISA that expands opportunity

Global standards are a catalyst to accelerate technical innovation

Standards have been critical to technology innovation, adoption, and growth for decades

RISC-V is a standards-defined Instruction Set Architecture developed by a global community

More than 4,600 RISC-V Members across 70 Countries

110 Chip SoC, IP, FPGA

3 I/O Memory, network, storage

21 Services Fab, design services

52 Software Dev tools, firmware, OS 4 Systems ODM, OEM

18 Industry Cloud, mobile, HPC, ML, automotive

183 Research Universities, Labs, other alliances

>4200 Individuals RISC-V engineers and advocates

RISC-V membership up 28% in 2023

New technical specifications ratified in the past two years including 123 ratified extensions

Technical Working Groups collaborating together

Incredible Market Potential

RISC-V is Inevitable

Source: The SHD Group, November, 2023

*forecast

RISC-V market revenues forecast \$92.7B by 2030

*Forecast

Source: The SHD Group, January 2024

RISC-∨°

Market Share Projections for RISC-V in 2030

The technical foundation for lasting success

Countries

- Tech sovereignty
- Accelerate local innovation and talent
- Incubate technology ecosystem from research to industry
- Access worldwide market

Multinationals

- Control strategic roadmap
- New opportunities for innovation and influence
- Growth business models
- Avoid vendor lock-in

Researchers

- Collaborative ISA thought leadership
- Enables innovative research
- Access global RISC-V research network
- Tech transfer addressing real world applications

Startups

- Supercharge hardware and software co-design
- Accelerate strategic roadmap in greenfield applications
- Collaboration partners

RISC-V Events

Discover the worldwide RISC-V Ecosystem at RISC-V Summits and events

Major RISC-V Summits in 2024

EU

June 24-28

722 delegates + exhibitors RISC-V 101 + 1st Hackathon

https://riscv-europe.org/

China

July 21-23

3,000 in person delegates 10,000 remote participants

<u>https://riscv-summit-china.co</u> <u>m/en/</u>

North America

October 21-23

1,070 attendees in 2023 RISC-V 101 + 2nd Hackathon

https://riscv.org/event/risc-vsummit-north-america-2024/

There are many RISC-V days around the world, check out the nearest location!

NRISC-V° SUMMITEU JUNE 24 - 28 | MUNICH 2024

Top talks on Al and HPC

Top talks on Functional Safety, Real Time, Automotive

https://riscv-europe.org/

第4届2024 RISC-V中国峰会 RISC-VSummit China

BOSC and University of Chinese Academy Sciences (UCAS) launched the one student one chip program in 2019

- First full RV64 CPU in 4 months
- 7,000 students so far, 13 chips taped out in 2023
- XiangShan NanHu open source RISC-V processor and laptop with AMD RX550 discrete GPU on <u>github</u>

Full open source EDA on github

DC-ROMA RISC-V Laptop II

- Octa-core RISC-V CPU up to 2GHz
- Ubuntu 23.10 pre-installed
- SpacemiT K1 SoC 256-bit RVV 1.0 vector and NPU

RISC-V SUMMIT

October 22-23, 2024 · Santa Clara, CA #RISCVEverywhere #RISCVSummit

RISC-V 101 and 2nd RISC-V Hackathon on October 21

Brazil joined as a Premier Member in 2024

250 Engineers to train on chip design

\$150M

Investment in RISC-V accelerator

25

Al Infrastructure Projects over 5 years

https://riscv.org/blog/2024/09/advancing-ai-the-brazilian-way-fostering-innovation-through-collaboration-and-open-standards/

Invest locally Engage globally

Engage in RISC-V 1 - Learn

RISC-V Online Learning

https://riscv.org/certifications-and-courses/

RISC-V Courses & RVFA Certification

- ★ FREE courses including Building a RISC-V CPU Core and Introduction to RISC-V
- ★ RISC-V Foundational Associate Certification and RISC-V Fundamentals to train new employees
- ★ Members receive a 30% discount on training and certification

The certification is also available <u>in Chinese</u>.

available in Chinese.

Reach out to <u>learn@riscv.org</u> for more information

GET RISC-V CERTIFIED!

RISC-V FOUNDATIONAL ASSOCIATE CERTIFICATION (RVFA)

Companies utilizing RISC-V are actively seeking skilled programmers and designers who grasp the RISC-V architecture and are also well-versed in its intricate specifications. Are you ready to meet this demand? Elevate your skills and get qualified now!

Get qualified

COUNDATIO

FOUNDATIONAL

ASSOCIATE

				211221122110	21122112					
	31 25	24 20	19 15	14	12 11	7	6	0		
	funct7	rs2	rs1	funct3		rd	ot	ocode		
	7	5	5	3		5		7		
Str	ructure of the generic R-ty	pe instruction								
1	.text		252	rdrila		V=0		V=1		
3	.globl main		SC-VI	OUNDATI	U-mode	Host A	aa	Guest App		
5	main:		OCIA	FE CERTIFIC	e mode	1		Syscall		
6 7	addi t0, x0, 0x5 addi t1, x0, 0x0	<pre># Initialize to t # Initialize t1 t</pre>	a 0	(RVFA)	VS-mode	s	yscall	Guest kernel		
8 9	loop: add t1, t1, t0	# Increment t1 by	to DISC V			Ļ		SBI		
10	addi t0, t0, -1	# Decrement t0 by	o grasp	the RISC-V arc	HS-mode	Host ke	ernel / Hype	rvisor (SEE)		
12	lui t0, 0x1	# II to is not ze # Set t0 to point	to addres ricate S	pecifications. A			‡ s	BI		
13 14	addi t0, t0, 0x100 sw t1, 0(t0)	<pre># Add 0x100 to t0 # Store the resul</pre>), to make <i>eVate y(</i> .t in 0x110	our skills and g	M-mode	Platform	Runtime Fi	rmware (SEE)		
		I CHAINE		ICICAL	a reare	INNE	RU RU			
	ROM	> Lo	ader	Runtime (e.g., OpenSBI)	Boot	loader	→ OS			
	UTUR -						7 • • • • • • • • • • • • • • • • • • •			

LFD111x - Building a RISC-V CPU Core

Create a RISC-V CPU with modern open source circuit design tools, methodologies, and microarchitecture, all from your browser

https://www.edx.org/learn/design/the-linux-foundation-building-a-risc-v-cpu-core

Engage in RISC-V 2 - Develop

A robust software ecosystem is essential for **RISC-V** adoption

- Enable upstream software on ratified RISC-V ISA and extensions
- Contribute RISC-V hardware to strategic software projects
- Accelerate developer journey to RISC-V

Enabling Developers with Hardware and Cloud Compute

Building the strongest ecosystem

Funding of \$7.8B

landscape.riscv.org

Engage in RISC-V 3 - Contribute

The First Place to Look - the RISC-V wiki!

RISC-V Tech

Welcome to the RISC-V Technical Wiki

5

Learn	Engage	Stay Up to Date
Start Here - Getting Started Guide: English Chinese	Dive Into Groups & Specification Development - Lifecycle Guide: English Chinese	Latest Top of the Tree (main branch) Specification ISA
See RISC-V Groups - Org Chart	Understand Community Norms - RISC-V Code of Conduct	Software Ecosystem Dashboard
Find Ratified Specifications - List	Attend Current Tech Meetings - Technical Calendar 🚍	Ratified Extensions
Review RISC-V Technical Policies - Approved 🕤 All	Join Mailing Lists, Read Archives - Mailing Lists 🐭	Active Groups (ICs, HCs, SIGs and TGs) 68 issues
Understand the RISC-V GitHub Organization - Overview	Find Group Working Documents: GitHub Google Drive	Active Specification Status 52 issues
Locate RISC-V Education - Courses GitHub	Participate in Specification and Group Development: Highlights	Certification Steering Committee (CSC)
Watch Technical Sessions - 2024 2023	Lead/Host/Join Meetings Technical Meetings Primer Meeting Disclosures	Voting Status
Peruse RISC-V collaboration documents - Google Drive	Develop Sail Code - Golden Model SIG group RISC-V Model Cookbook	Technical Newsletter
Read the RISC-V Specification States - Definitions	Contribute to ACTs - Architecture Test SIG group riscv-arch-test repo	RISC-V News
Explore Sail - Tutorial Video & Source Add New Extension	Engage in Ecosystem - DevPartners DevBoards Labs	More
	Request Help - Via GitHub Issues (login required) Via Email: help@riscv.org	

We produce specifications, models and tests

RISC-V ISA is our core work

Adding extensions to the basic ISA

ISA

- I Base integer instruction set
- M Integer multiplication and division
- A Atomic instructions
- F Single precision floating point
- D Double precision floating point
- Q Quad precision floating point
- C Compressed instructions
- V Vector/SIMD operations
- P Packed SIMD/vector instructions
- N User level interrupts
- S Supervisor mode
- U User mode
- H Hypervisor mode
- B Bit manipulation instructions

- J Dynamically translated languages support
- T Transactional memory support
- L Decimal floating point
- G Additional general instructions
- Zba Address generation instructions
- Zbb Basic bit-manipulation instructions
- Zbc Carry-less multiply instructions
- Zbs Single bit instructions
- Zbt Ternary bit manipulation instructions
- Zfh Half precision floating point
- Zvfh Half precision vector floating point Zvlsseg — Vector segment loads and stores

Combining extensions into profiles

RVA22U64

M, A, F, D, C, Zicsr, Zicntr, Ziccif, Ziccrse, Ziccamoa, Zicclsm, Za64rs, Zihpm, Zba, Zbb, Zbs, Zic64b, Zicbom, Zicbop, Zicboz, Zfhmin, Zkt

RVA22S64

Zifencei, Ss1p12, Svbare, Sv39, Svade, Ssccptr, Sstvecd, Sstvala, Sscounterenw, Svpbmt, Svinval

RVM23U32 RV32I, M, Zba, Zbb, Zbs, Zicond, Zihintpause, Zihintntl, Zce, Zicbop, Zimop

Server SoC and Platform

IOMMU, RAS/RERI

	Applications							
Platform E	BRS interfaces			Platform H/W interfaces				
			RISC-V Server Plat					
	Boot Runtime	and Services	Platform Firmware	Security Model				
			SoC Hardware					
ut-of-band mgmt. interfaces					In-band mgmt. interfaces			
		Deeebaaa						

Baseboard Management Controller (BMC)

Server SoC

ealt

- Clocks and Timers
- Interrupt Controllers
- IOMMU
- PCle subsystem
- Reliability, Availability, and Serviceability
- Quality of Service
- Performance monitoring
- Security

Platforms and industry verticals

smartes

ficon.

6,

Datacenter HPC

RVA

MCU

ISA

Real

time

Medical

8

00

Platforms and the software ecosystem

Smart

ohones

Folge JOA

Big Data, Database, HPC RHEL, Ubuntu, SUSE

> Datacenter HPC

> > RVA

MCU

QNX

PX5

ISA

Medical

rospace

Hypervisors

Real

time

Android

Smart Camera

AWS Greengrass / **Bosch Kanto** industrial gateway

Yocto Container runtime

Zephyr freeRTOS Smart Speaker

Android Automotive Automotive Grade Linux Safety Linux

RISC-V expands opportunity

Thank you

