
Chisel and FIRRTL for next-
generation SoC designs
Jack Koenig
SiFive
CWG TAC Member



Introduction

What is the Chisel Working Group (CWG)?



What is Chisel?
• Constructing Hardware In a Scala Embedded Language
• Domain Specific Language where the domain is digital design
• NOT high-level synthesis (HLS) nor behavioral synthesis
• Write Scala program to construct and connect hardware objects

• Parameterized types
• Object-Oriented Programming
• Functional Programming
• Static Typing w/ Powerful Type Inference

• Intended for writing reusable hardware generators (libraries)



No Loss of Expressibility: “Verilog-like” Chisel

FIR Filter - 3-point moving sum

What about >3 points?
What about weighted averages?

We want a generic FIR filter!



Massive Increase in Parameterizability: “Software-like” Chisel

FIR Filter - Parameterized by bitwidth and 
coeffients with no loss of expressibility or 
performance.

Meta-programming enables powerful 
parameterization.



Massive Increase in Parameterizability: “Software-like” Chisel

FIR Filter - Parameterized by bitwidth and 
coeffients with no loss of expressibility or 
performance.

Meta-programming enables powerful 
parameterization.



Platform-Specific or Application-Specific RTL Changes

IBM 45nm 
SOI

ST 28nm 
FDSOI

Zynq FPGA

Chip RTL
+ scan interface
+ snapshotting
+ interactive debug + clock-generators

+ SRAMs with init
+ specialized layout

+ SRAM macros
+ modified module hierarchy
+ specialized layout



Realization: We need a software stack, but for hardware

libraries

language

compiler

platforms

projects

x86 ARM RISC-V
transforms

clang

HwachaRocketBOOM

rocketchip chisel-utils

FIRRTL
Chisel Frontend



FIRRTL: An Extensible Hardware Compiler Framework

Modular Compiler Passes (Transforms)

Top

MyMux

... ...

Top

MyMux

... ...

Top

MyMux

... ...Core
Transform

Custom
Transform

Metadata
Annotations

Metadata
Annotations

Metadata
Annotations

Robust Metadata/Annotations Support



Projects of the Chisel Working Group
• Chisel 3
• FIRRTL
• ChiselTest (formerly Chisel Testers 2)
• Treadle
• Chisel IOTesters
• DSP Tools
• Diagrammer
• Chisel Bootcamp
• Chisel Template

Currently a CHIPS Alliance “Sandbox” project with intent to ”Graduate” 



Highlights

(From the last six-ish months)



Chisel v3.5.0-RC1 Released!
• Culmination of almost a year of work
• Lightning Highlights

•Vec literal support
•Scala 2.13 support (2.11 EOL)
•Decoder + minimizer API in chisel3.util (w/ Espresso integration)
•Source locator compacting

• Far too many things to cover, see:
• https://github.com/chipsalliance/chisel3/releases/tag/v3.5.0-RC1
• https://github.com/chipsalliance/firrtl/releases/tag/v1.5.0-RC1
• Other project notes to come by v3.5.0

Note: v3.5 Docs will not be reflected on chisel-lang.org until v3.5.0 is released

https://github.com/chipsalliance/chisel3/releases/tag/v3.5.0-RC1
https://github.com/chipsalliance/firrtl/releases/tag/v1.5.0-RC1


Chisel v3.5.0-RC1 Released!
• Culmination of almost a year of work
• Lightning Highlights

•Vec literal support
•Scala 2.13 support (2.11 EOL)
•Decoder + minimizer API in chisel3.util (w/ Espresso integration)
•Source locator compacting

• Far too many things to cover, see:
• https://github.com/chipsalliance/chisel3/releases/tag/v3.5.0-RC1
• https://github.com/chipsalliance/firrtl/releases/tag/v1.5.0-RC1
• Other project notes to come by v3.5.0

Note: v3.5 Docs will not be reflected on chisel-lang.org until v3.5.0 is released

https://github.com/chipsalliance/chisel3/releases/tag/v3.5.0-RC1
https://github.com/chipsalliance/firrtl/releases/tag/v1.5.0-RC1


Chisel v3.5.0-RC1 Released!
• Culmination of almost a year of work
• Lightning Highlights

•Vec literal support
•Scala 2.13 support (2.11 EOL)
•Decoder + minimizer API in chisel3.util (w/ Espresso integration)
•Source locator compacting

• Far too many things to cover, see:
• https://github.com/chipsalliance/chisel3/releases/tag/v3.5.0-RC1
• https://github.com/chipsalliance/firrtl/releases/tag/v1.5.0-RC1
• Other project notes to come by v3.5.0

Note: v3.5 Docs will not be reflected on chisel-lang.org until v3.5.0 is released

https://github.com/chipsalliance/chisel3/releases/tag/v3.5.0-RC1
https://github.com/chipsalliance/firrtl/releases/tag/v1.5.0-RC1


Chisel v3.5.0-RC1 Released!
• Culmination of almost a year of work
• Lightning Highlights

•Vec literal support
•Scala 2.13 support (2.11 EOL)
•Decoder + minimizer API in chisel3.util (w/ Espresso integration)
•Source locator compacting

• Far too many things to cover, see:
• https://github.com/chipsalliance/chisel3/releases/tag/v3.5.0-RC1
• https://github.com/chipsalliance/firrtl/releases/tag/v1.5.0-RC1
• Other project notes to come by v3.5.0

Note: v3.5 Docs will not be reflected on chisel-lang.org until v3.5.0 is released

https://github.com/chipsalliance/chisel3/releases/tag/v3.5.0-RC1
https://github.com/chipsalliance/firrtl/releases/tag/v1.5.0-RC1


ChiselTest Improvements
• Improved Verilator simulation performance via JNA
• Verilator backend now supports dumping FST instead of VCD
• PeekPokeTester compatibility API

• Helps migrate users off old chisel-iotesters

• Simulation constructs can now be annotated
• assert/assume/cover graduated out of experimental
• Simulation binary caching
• Support for bounded model checking (next slide)



Native Formal Verification Support
• Formal verification is assumed to be difficult for 

users
• Good tooling and sensible defaults can help

• Similar to simulator-based flow
• Safe past function
• Automatic reset guarding (default but disableable)

• Close integration with simulation testing flow
• Same basic APIs
• Same IDE and tooling integration

• Automatically runs counter examples through a 
simulator to provide a waveform

• Native FIRRTL -> SMTLib or btor2 output
• Works with Z3 and CVC4

See Kevin Laeufer’s WOSET Paper https://woset-workshop.github.io/WOSET2021.html#article-3

https://woset-workshop.github.io/WOSET2021.html


Native Formal Verification Support
• Formal verification is assumed to be difficult for 

users
• Good tooling and sensible defaults can help

• Similar to simulator-based flow
• Safe past function
• Automatic reset guarding (default but disableable)

• Close integration with simulation testing flow
• Same basic APIs
• Same IDE and tooling integration

• Automatically runs counter examples through a 
simulator to provide a waveform

• Native FIRRTL -> SMTLib or btor2 output
• Works with Z3 and CVC4

See Kevin Laeufer’s WOSET Paper https://woset-workshop.github.io/WOSET2021.html#article-3

https://woset-workshop.github.io/WOSET2021.html


Definition / Instance
• Historically, Chisel elaborates every module 

instance and then deduplicates structurally 
equivalent modules

• New experimental API for definining (and 
elaborating) a module once and instantiating 
multiple times
• Definition – Elaborates implementation of module
• Instance – Merely instantiates public API

• Major performance optimization for very large or 
hierarchical designs

• Composes with cross-module reference annotations

See https://github.com/chipsalliance/chisel3/pull/2045 for docs

https://github.com/chipsalliance/chisel3/pull/2045


Definition / Instance
• Historically, Chisel elaborates every module 

instance and then deduplicates structurally 
equivalent modules

• New experimental API for definining (and 
elaborating) a module once and instantiating 
multiple times
• Definition – Elaborates implementation of module
• Instance – Merely instantiates public API

• Major performance optimization for very large or 
hierarchical designs

• Composes with cross-module reference annotations

See https://github.com/chipsalliance/chisel3/pull/2045 for docs

https://github.com/chipsalliance/chisel3/pull/2045


Definition / Instance
• Historically, Chisel elaborates every module 

instance and then deduplicates structurally 
equivalent modules

• New experimental API for definining (and 
elaborating) a module once and instantiating 
multiple times
• Definition – Elaborates implementation of module
• Instance – Merely instantiates public API

• Major performance optimization for very large or 
hierarchical designs

• Composes with cross-module reference annotations

See https://github.com/chipsalliance/chisel3/pull/2045 for docs

https://github.com/chipsalliance/chisel3/pull/2045


• Often users want to manipulate hardware values as if they 
were a different type
• AXI-style flat bus interface used as more structured hierarchy
• Manipulate 1D Array of Reg as if it were 2D

• Allows treating objects of one type as another
• A superpowered union or cast, like View in SQL
• Used to implement:

• Seamless integration with Scala types
• Bundle upcasting
• User-defined mappings between types

DataView

See https://github.com/chipsalliance/chisel3/pull/1955 for docs

https://github.com/chipsalliance/chisel3/pull/1955


• Often users want to manipulate hardware values as if they 
were a different type
• AXI-style flat bus interface used as more structured hierarchy
• Manipulate 1D Array of Reg as if it were 2D

• Allows treating objects of one type as another
• A superpowered union or cast, like View in SQL
• Used to implement:

• Seamless integration with Scala types
• Bundle upcasting
• User-defined mappings between types

DataView

See https://github.com/chipsalliance/chisel3/pull/1955 for docs

https://github.com/chipsalliance/chisel3/pull/1955


• Often users want to manipulate hardware values as if they 
were a different type
• AXI-style flat bus interface used as more structured hierarchy
• Manipulate 1D Array of Reg as if it were 2D

• Allows treating objects of one type as another
• A superpowered union or cast, like View in SQL
• Used to implement:

• Seamless integration with Scala types
• Bundle upcasting
• User-defined mappings between types

DataView

See https://github.com/chipsalliance/chisel3/pull/1955 for docs

https://github.com/chipsalliance/chisel3/pull/1955


• Often users want to manipulate hardware values as if they 
were a different type
• AXI-style flat bus interface used as more structured hierarchy
• Manipulate 1D Array of Reg as if it were 2D

• Allows treating objects of one type as another
• A superpowered union or cast, like View in SQL
• Used to implement:

• Seamless integration with Scala types
• Bundle upcasting
• User-defined mappings between types

DataView

See https://github.com/chipsalliance/chisel3/pull/1955 for docs

https://github.com/chipsalliance/chisel3/pull/1955


AutoCloneType2
• cloneType is an implementation detail that leaks 

into the user API (since original Chisel)
• Useless boilerplate
• Original AutoCloneType works okay but has 

some limitations
• Parameters must be defined as “vals”
• Works in typical use cases but not all use cases
• Slow

• The Chisel compiler plugin now generates 
cloneType for all Bundles

• Available in Chisel v3.4.3 (opt-in)
• Improved in v3.4.4
• Mandatory in v3.5.0

Before:

After:



Community



Continued Growth

Chisel Community Conference
Shanghai, June 2021

See talks on 
www.youtube.com/chisel-lang



Get Involved
www.chisel-lang.orgChat with us on Gitter

Ask questions on StackOverflow

Watch talks on YouTube



Extra / Old Slides



Further Improved Website

Community page

www.chisel-lang.org
Now with a search bar!

Latest API Docs

Project-specific documentation



Further Improved Website
www.chisel-lang.org

Documentation examples are 
compiled and run!!!



Enhanced Signal Naming (from last time)
• Historically Chisel has struggled with 

signal naming
• Chisel 3.4 has much better naming

Old* Verilog Chisel 3.4 Verilog



Refined Signal Naming
• Optional “tap” output
• What should the name of the port be?

• port
• tap_port
• tap
• tapPort

• In 3.4.0, the name was ”tap_port”
• In 3.4.1 on, the name is “tap”
• Additional improvements to naming 

(especially when using recursion)
• Now with ~5 months of use, it’s going 

great!



Improved Release Methodology

major major

Backport Backport Backport

major

Backport

3.2.x

master

3.3.x3.3.0

3.2.13.2.0

Automated Backporting + CI

3.2-SNAPSHOT

3.3-SNAPSHOT

3.5-SNAPSHOT


