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Introduction

What is the Chisel Working Group (CWG)?



What is Chisel?
• Constructing Hardware In a Scala Embedded Language
• Domain Specific Language where the domain is digital design
• NOT high-level synthesis (HLS) nor behavioral synthesis
• Write Scala program to construct and connect hardware objects

• Parameterized types
• Object-Oriented Programming
• Functional Programming
• Static Typing w/ Powerful Type Inference

• Intended for writing reusable hardware generators (libraries)



No Loss of Expressibility: “Verilog-like” Chisel

FIR Filter - 3-point moving sum

What about >3 points?
What about weighted averages?

We want a generic FIR filter!



Massive Increase in Parameterizability: “Software-like” Chisel

FIR Filter - Parameterized by bitwidth and 
coeffients with no loss of expressibility or 
performance.

Meta-programming enables powerful 
parameterization.
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Platform-Specific or Application-Specific RTL Changes

IBM 45nm 
SOI

ST 28nm 
FDSOI

Zynq FPGA

Chip RTL
+ scan interface
+ snapshotting
+ interactive debug + clock-generators

+ SRAMs with init
+ specialized layout

+ SRAM macros
+ modified module hierarchy
+ specialized layout



Realization: We need a software stack, but for hardware

libraries

language

compiler

platforms

projects

x86 ARM RISC-V
transforms

clang

HwachaRocketBOOM

rocketchip chisel-utils

FIRRTL
Chisel Frontend



FIRRTL: An Extensible Hardware Compiler Framework

Modular Compiler Passes (Transforms)

Top
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Transform

Custom
Transform

Metadata
Annotations

Metadata
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Metadata
Annotations

Robust Metadata/Annotations Support



Projects of the Chisel Working Group
• Chisel 3
• FIRRTL
• ChiselTest (formerly Chisel Testers 2)
• Treadle
• Chisel IOTesters
• DSP Tools
• Diagrammer
• Chisel Bootcamp
• Chisel Template

Currently a CHIPS Alliance “Sandbox” project with intent to ”Graduate” 



Highlights

(From the last six-ish months)



Chisel v3.5.0-RC1 Released!
• Culmination of almost a year of work
• Lightning Highlights

•Vec literal support
•Scala 2.13 support (2.11 EOL)
•Decoder + minimizer API in chisel3.util (w/ Espresso integration)
•Source locator compacting

• Far too many things to cover, see:
• https://github.com/chipsalliance/chisel3/releases/tag/v3.5.0-RC1
• https://github.com/chipsalliance/firrtl/releases/tag/v1.5.0-RC1
• Other project notes to come by v3.5.0

Note: v3.5 Docs will not be reflected on chisel-lang.org until v3.5.0 is released

https://github.com/chipsalliance/chisel3/releases/tag/v3.5.0-RC1
https://github.com/chipsalliance/firrtl/releases/tag/v1.5.0-RC1
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ChiselTest Improvements
• Improved Verilator simulation performance via JNA
• Verilator backend now supports dumping FST instead of VCD
• PeekPokeTester compatibility API

• Helps migrate users off old chisel-iotesters

• Simulation constructs can now be annotated
• assert/assume/cover graduated out of experimental
• Simulation binary caching
• Support for bounded model checking (next slide)



Native Formal Verification Support
• Formal verification is assumed to be difficult for 

users
• Good tooling and sensible defaults can help

• Similar to simulator-based flow
• Safe past function
• Automatic reset guarding (default but disableable)

• Close integration with simulation testing flow
• Same basic APIs
• Same IDE and tooling integration

• Automatically runs counter examples through a 
simulator to provide a waveform

• Native FIRRTL -> SMTLib or btor2 output
• Works with Z3 and CVC4

See Kevin Laeufer’s WOSET Paper https://woset-workshop.github.io/WOSET2021.html#article-3

https://woset-workshop.github.io/WOSET2021.html
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Definition / Instance
• Historically, Chisel elaborates every module 

instance and then deduplicates structurally 
equivalent modules

• New experimental API for definining (and 
elaborating) a module once and instantiating 
multiple times
• Definition – Elaborates implementation of module
• Instance – Merely instantiates public API

• Major performance optimization for very large or 
hierarchical designs

• Composes with cross-module reference annotations

See https://github.com/chipsalliance/chisel3/pull/2045 for docs

https://github.com/chipsalliance/chisel3/pull/2045
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• Often users want to manipulate hardware values as if they 
were a different type
• AXI-style flat bus interface used as more structured hierarchy
• Manipulate 1D Array of Reg as if it were 2D

• Allows treating objects of one type as another
• A superpowered union or cast, like View in SQL
• Used to implement:

• Seamless integration with Scala types
• Bundle upcasting
• User-defined mappings between types

DataView

See https://github.com/chipsalliance/chisel3/pull/1955 for docs

https://github.com/chipsalliance/chisel3/pull/1955
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AutoCloneType2
• cloneType is an implementation detail that leaks 

into the user API (since original Chisel)
• Useless boilerplate
• Original AutoCloneType works okay but has 

some limitations
• Parameters must be defined as “vals”
• Works in typical use cases but not all use cases
• Slow

• The Chisel compiler plugin now generates 
cloneType for all Bundles

• Available in Chisel v3.4.3 (opt-in)
• Improved in v3.4.4
• Mandatory in v3.5.0

Before:

After:



Community



Continued Growth

Chisel Community Conference
Shanghai, June 2021

See talks on 
www.youtube.com/chisel-lang



Get Involved
www.chisel-lang.orgChat with us on Gitter

Ask questions on StackOverflow

Watch talks on YouTube



Extra / Old Slides



Further Improved Website

Community page

www.chisel-lang.org
Now with a search bar!

Latest API Docs

Project-specific documentation



Further Improved Website
www.chisel-lang.org

Documentation examples are 
compiled and run!!!



Enhanced Signal Naming (from last time)
• Historically Chisel has struggled with 

signal naming
• Chisel 3.4 has much better naming

Old* Verilog Chisel 3.4 Verilog



Refined Signal Naming
• Optional “tap” output
• What should the name of the port be?

• port
• tap_port
• tap
• tapPort

• In 3.4.0, the name was ”tap_port”
• In 3.4.1 on, the name is “tap”
• Additional improvements to naming 

(especially when using recursion)
• Now with ~5 months of use, it’s going 

great!



Improved Release Methodology

major major

Backport Backport Backport

major

Backport

3.2.x

master

3.3.x3.3.0

3.2.13.2.0

Automated Backporting + CI

3.2-SNAPSHOT

3.3-SNAPSHOT

3.5-SNAPSHOT


