CHISEU

Chisel and FIRRTL for next-
generation SoC designs

Jack Koenig
SiFive
CWG TAC Member

Introduction

What is the Chisel Working Group (CWG)?

What is Chisel?

» Constructing Hardware In a Scala Embedded Language
« Domain Specific Language where the domain is digital design
* NOT high-level synthesis (HLS) nor behavioral synthesis

» Write Scala program to construct and connect hardware objects
» Parameterized types
* Object-Oriented Programming
 Functional Programming
» Static Typing w/ Powerful Type Inference

* Intended for writing reusable hardware generators (libraries)

No Loss of Expressibility: “Verilog-like” Chisel

ST
b0 »@ bi »@
(D)
U

class MovingSum3(bitWidth: Int) extends Module {
val io = IO(new Bundle {
val in = Input(UInt(bitwWidth.w))
val out = Output(UInt(bitwidth.W))

})
FIR Filter - 3-point moving sum ..
val z1 = RegNext(io.in)
What about >3 points? val z2 = RegNext(z1)

What about weighted averages?

We want a generic FIR filter! io.out := (io.in * 1.U) + (z1 % 1.U) + (z2 * 1.U)

Massive Increase in Parameterizability: “Software-like” Chisel

1T
b0 »@ b1 »@
AN
U

FIR Filter - Parameterized by bitwidth and
coeffients with no loss of expressibility or
performance.

Meta-programming enables powerful
parameterization.

class FirFilter(bitWidth: Int, coeffs: Seq[UInt]) extends Module {
val io = IO(new Bundle {
val in = Input(UInt(bitWidth.W))
val out = Output(UInt())
})

// Create the serial-in, parallel-out shift register

val zs = Reg(Vec(coeffs.length, UInt(bitWidth.W)))
zs(@) := io.in
for (i <= 1 until coeffs.length) {
zs(i) := zs(i-1)
¥

// Do the multiplies
val products = VecInit.tabulate(coeffs.length)(i => zs(i) * coeffs(i))

// Sum up the products
io.out := products.reduce(_ +& _)

Massive Increase in Parameterizability: “Software-like” Chisel

\ 4

77 b/ 77 class FirFilter(bitWidth: Int, coeffs: Seq[UInt]) extends Module {
_] val io = IO(new Bundle {

x[i] T Z’
bo—{E%) bi1{ // same 3-point moving sum filter as before
val movingSum3Filter = Module(new FirFilter(8, Seq(1.U, 1.U, 1.U)))

// 1-cycle delay as a FIR filter

val delayFilter = Module(new FirFilter(8, Seq(@0.U, 1.U)))
FIR Filter
coeffients . . . : :
performar // 5-point FIR filter with a triangle impulse response

val triangleFilter = Module(new FirFilter(8, Seq(1.U, 2.U, 3.U, 2.U, 1.U)))
Meta-prog '.ul".'""'y ITTUNT OO VV"V' rear - - ~ o Sy A 7 ffs(i))
parameterization.

// Sum up the products
io.out := products.reduce(_ +& _)

}

Platform-Specific or Application-Specific RTL Changes

[Chip RTL J
+ scan interface . .
+ snapshotting . :
+ interactive debug o+ clock-generators

+ SRAMs with init
+ specialized layout

Zynq FPGA ST 28nm
FDSOI

+ SRAM macros
+ modified module hierarchy

+ specialized layout

IBM 45nm
SOl

Realization: We need a software stack, but for hardware

projects

- THE C++ A protobuf
libraries - SYAnoARD Lisrary IR

language
clan | f
i — MM | *
compiler ransforms
P FIRRIL
x86 ARM RISC-V
| = \ C
platforms .,k
“PEN" OpenROAD
PGA P

VERILATOR

FIRRTL: An Extensible Hardware Compiler Framework

a N) ())
Top Top Top
v v v
MyMux MyMux MyMux
Core Custom
Transform Transform
Metadata Metadata Metadata
Annotations Annotations Annotations
_ J) L)

Modular Compiler Passes (Transforms) Robust Metadata/Annotations Support

Projects of the Chisel Working Group

« Chisel 3

 FIRRTL

» ChiselTest (formerly Chisel Testers 2)
* Treadle

» Chisel IOTesters

« DSP Tools

« Diagrammer

» Chisel Bootcamp

» Chisel Template

Currently a CHIPS Alliance “Sandbox” project with intent to "Graduate”

Highlights

(From the last six-ish months)

11 10/11/21 © 2020 SiFive. All Rights Reserved. @ SiFive

B
Chisel v3.5.0-RC1 Released!

« Culmination of almost a year of work

* Lightning Highlights
*Vec literal support
*Scala 2.13 support (2.11 EOL)
* Decoder + minimizer API in chisel3.util (w/ Espresso integration)

« Source locator compacting

* Far too many things to cover, see:
» https://github.com/chipsalliance/chisel3/releases/tag/v3.5.0-RC1
» https://github.com/chipsalliance/firrtl/releases/tag/v1.5.0-RC1
* Other project notes to come by v3.5.0

Note: v3.5 Docs will not be reflected on chisel-lang.org until v3.5.0 is released

https://github.com/chipsalliance/chisel3/releases/tag/v3.5.0-RC1
https://github.com/chipsalliance/firrtl/releases/tag/v1.5.0-RC1

Chisel v3.5.0-RC1 Released!

« Culmination of almost a year of work

* Lightning Highlights
¢Vec literal support
*Scala 2.13 support (2.11 EOL)

Vec.Lit(@xa.U, Oxb.U)

* Decoder + minimizer API in chisel3.util (w/ Espresso integration)

« Source locator compacting

* Far too many things to cover, see:
» https://github.com/chipsalliance/chisel3/releases/tag/v3.5.0-RC1

* https://github.com/chipsalliance/firrtl/releases/tag/v1.5.0-RC1
* Other project notes to come by v3.5.0

Note: v3.5 Docs will not be reflected on chisel-lang.org until v3.5.0 is released

https://github.com/chipsalliance/chisel3/releases/tag/v3.5.0-RC1
https://github.com/chipsalliance/firrtl/releases/tag/v1.5.0-RC1

Chisel v3.5.0-RC1 Released!

val table = TruthTable(
« Culmination of almost a year of work Vec.L1it({ Mar |

// BitPat("beee") —> BitPat("bo"),

* Lightning Highlights BitPat("be@1") -> BitPat("b?"),

*\/ec literal support BitPat("be10") -> BitPat("b?"),
«Scala 2.13 Support (2 11 EOL) // BitPat("b@11") -> BitPat("be"),

' e —— : - , : BitPat("b108") —> BitPat("bl"),

~|Decoder + minimizer API in chisel3.util (w/ Espresso |ntegrat|on)|v—~ BitPat("b101") —> BitPat("bi"),
« Source locator compacting // BitPat("b11@") -> BitPat("be"),

« Far too many things to cover, see: EIERERCRILLS) = BLERaR Rl

),
BitPat("b@") // default
)
output := decoder(input, table)

» https://github.com/chipsalliance/chisel3/releases/tag/v3.5.0-RC1
» https://github.com/chipsalliancef/firrtl/releases/tag/v1.5.0-RC1
* Other project notes to come by v3.5.0

Note: v3.5 Docs will not be reflected on chisel-lang.org until v3.5.0 is released

https://github.com/chipsalliance/chisel3/releases/tag/v3.5.0-RC1
https://github.com/chipsalliance/firrtl/releases/tag/v1.5.0-RC1

Chisel v3.5.0-RC1 Released!

val table = TruthTable(
» Culmination of almost a year of work Vee.L1E(| Mt |
// BitPat("beee") -> BitPat("be"),
* Lightning Highlights BitPat("be@1") -> BitPat("b?"),
*Vec literal support BitPat("b@10") -> BitPat("b?"),
«Scala 2.13 Support (211 EOL) // BitPat("b@11") -> BitPat("be"),

BitPat("b100") -> BitPat("bl"),
BitPat("b101") -> BitPat("bl"),
// BitPat("bl10") -> BitPat("be"),
B1tPat ("Mba11Y) =5 BitPat(®bl™)
),
BitPat("b@") // default
)

* Decoder + minimizer API in chisel3.util (w/ Espresso integration)
~|Source locator compacting

« Far too many things to cover, seex
» https://github.com/chipsalliance/chisel3/releases/tag/v3.5.0-RC1
* https://github.com/chipsalliancef/firrtl/releases/tag/v1.5.0-RC1
* Other project notes to come by v3.5.0

// ®[main.scala 13:22 main.scala 14:9 main.scala 12:7]
/] =>
// ®[main.scala 12:22 11:7 13:9]

Note: v3.5 Docs will not be reflected on chisel-lang.org until v3.5.0 is released

https://github.com/chipsalliance/chisel3/releases/tag/v3.5.0-RC1
https://github.com/chipsalliance/firrtl/releases/tag/v1.5.0-RC1

ChiselTest Improvements

» Improved Verilator simulation performance via JNA
« Verilator backend now supports dumping FST instead of VCD
» PeekPokeTester compatibility API

 Helps migrate users off old chisel-iotesters
 Simulation constructs can now be annotated
« assert/assume/cover graduated out of experimental
 Simulation binary caching
» Support for bounded model checking (next slide)

Native Formal Verification Support

* Formal verification is assumed to be difficult for
users

» Good tooling and sensible defaults can help
 Similar to simulator-based flow
» Safe past function
» Automatic reset guarding (default but disableable)

* Close integration with simulation testing flow
* Same basic APIs
« Same IDE and tooling integration

« Automatically runs counter examples through a
simulator to provide a waveform

» Native FIRRTL -> SMTLib or btor2 output
» Works with Z3 and CVC4

See Kevin Laeufer's WOSET Paper https://woset-workshop.github.io/WOSET2021.html#article-3

https://woset-workshop.github.io/WOSET2021.html

Native Formal Verification Support

* Formal verification is assumed to be difficult for
users

» Good tooling and sensible defaults can help
* Similar to simulator-based flow
» Safe past function
» Automatic reset guarding (default but disableable)

* Close integration with simulation testing flow
« Same basic APls
« Same IDE and tooling integration

« Automatically runs counter examples through a
simulator to provide a waveform

» Native FIRRTL -> SMTLib or btor2 output
» Works with Z3 and CVC4

See Kevin Laeufer's WOSET Paper https://woset-workshop.github.io/\WWOS

class Quizl5 extends Module {
/* [...] I/0 definitions */
val mem = SyncReadMem(256, UInt(32.W), WriteFirst)
when(iWrite) { mem.write(iWAddr, iData) }
oData := mem.read(iRAddr, iRead)

when(past(iWrite && iRead &&
iWAddr === iRAddr)) {
verification.assert(oData === past(iData))

class ZipCpuQuizzes extends AnyFlatSpec
with ChiselScalatestTester with Formal {

"Quizl5" should "pass with WriteFirst" in {
verify(new Quiz15, Seq(BoundedCheck(5)))

https://woset-workshop.github.io/WOSET2021.html

Definition / Instance

« Historically, Chisel elaborates every module
instance and then deduplicates structurally
equivalent modules

* New experimental API for definining (and
elaborating) a module once and instantiating
multiple times
* Definition — Elaborates implementation of module
* Instance — Merely instantiates public API

» Major performance optimization for very large or
hierarchical designs

» Composes with cross-module reference annotations

See https://github.com/chipsalliance/chisel3/pull/2045 for docs

https://github.com/chipsalliance/chisel3/pull/2045

Definition / Instance

class AddOne(width: Int) extends Module {
@public val in = IO(Input(UInt(width.W)))
@public val out = IO(Output(UInt(width.w)))

Historically, Chisel elaborates every module

.) out := in + 1.U
instance and then deduplicates structurally }
equivalent modules
. L. class AddTwo(width: Int) extends Module {

* New experimental API for definining (and val in = I0(Input(UInt(width.W)))
elaborating) a module once and instantiating I ot = TOlDNERIE CUTHE Gwideh A0 1)
multiple times
- Definition — Elaborates implementation of module Witk adudnsDer & PerinsELon (heR Aucone (wadth))

val i@ = Instance(addOneDef)

* Instance — Merely instantiates public API ,
val i1 = Instance(addOneDef)

Major performance optimization for very large or

hierarchical designs i0.in := in
. _ il.in := i@.out
» Composes with cross-module reference annotations out := il.out
}

See https://github.com/chipsalliance/chisel3/pull/2045 for docs

https://github.com/chipsalliance/chisel3/pull/2045

Definition / Instance

class AddOne(width: Int) extends Module {
@public val in = IO(Input(UInt(width.W)))
@public val out = IO(Output(UInt(width.w)))

Historically, Chisel elaborates every module

.) out := in + 1.U
instance and then deduplicates structurally }
equivalent modules
. L. class AddTwo(width: Int) extends Module {

* New experimental API for definining (and val in = I0(Input(UInt(width.W)))
elaborating) a module once and instantiating val out = I0(Output(UInt(width.w)))
multiple times
« Definition — Elaborates implementation of module // Potential alternate API idth))

val i@ = Instantiate[AddOne](width)

* Instance — Merely instantiates public API
val ii = Instantiate[AddOne](width)

Major performance optimization for very large or

hierarchical designs i0.in := in
. _ il.in := i@.out
» Composes with cross-module reference annotations out := il.out
}

See https://github.com/chipsalliance/chisel3/pull/2045 for docs

https://github.com/chipsalliance/chisel3/pull/2045

DataView

» Often users want to manipulate hardware values as if they
were a different type
» AXI-style flat bus interface used as more structured hierarchy
* Manipulate 1D Array of Reg as if it were 2D

* Allows treating objects of one type as another
» A superpowered union or cast, like View in SQL

» Used to implement:
» Seamless integration with Scala types
* Bundle upcasting
» User-defined mappings between types

See https://github.com/chipsalliance/chisel3/pull/1955 for docs

https://github.com/chipsalliance/chisel3/pull/1955

DataView val a, b, ¢, d = I0(Input(UInt(8.w)))

val w, x, vy, z = IO(Output(UInt(8.W)))
(lw; x); {y; Z)) = ((Ca; Bb); (c; d))

» Often users want to manipulate hardware value
were a different type

» AXI-style flat bus interface used as more structured hi

» Manipulate 1D Array of Reg as if it were 2D

 Allows treating objects of one type as apother
» A superpowered union or cast, like View in SQL

» Used to implement:

{ Seamless integration with Scala types
* Bundle upcasting

» User-defined mappings between types

See https://github.com/chipsalliance/chisel3/pull/1955 for docs

https://github.com/chipsalliance/chisel3/pull/1955

DataVIGW val a. b, ¢, d = I0(Input(UInt(8.w)))

class Foo extends Bundle {
val a = UInt(8.W)

» Often users want to manipulate hard y
were a different type
» AXI-style flat bus interface used as more stry
« Manipulate 1D Array of Reg as if it were 2D val b = UInt(8.W)
)

M sss

class Bar extends Foo {

 Allows treating objects of one type a

» A superpowered union or cast

* Used to implement: val foo = IO(Input(new Foo))
» Seamless integration wi

; val bar = I0(Output(new Bar))
-| Bundle upcasting .
- User-defined mappings between types bar.viewAsSupertype(new Foo) := foo // bar.a := foo.a
bat.b :=:123.U // Still need to drive .b

Scala types

See https://github.com/chipsalliance/chisel3/pull/1955 for docs

https://github.com/chipsalliance/chisel3/pull/1955

DataVieW class MyBundle(val w: Int) extends Bundle {

val foo = UInt(w.W)
cla val bar = UInt(w.W)

» Often users want to manipulate hard y

were a different type 0 :
« AXI-style flat bus interface used as more st Cla| implicit val vl = DataView[MyBundle, Vec[UInt1I(

- Manipulate 1D Array of Reg as if it were 2D V| bun => Vec(2, UInt(bun.w.W)), // Create a View from a Target

: : .foo —> ; -> 1 M h field
- Allows treating objects of one type a| * - 00 55 Wi msDAF =2 () G HRR Sach SN0
: . //

» A superpowered union or cast, like BE o
» Used to implement: val

« Seamless integration with Scala types - val out = IO(Output(new MyBundle(8)))

* Bundle upcasting

{Usebdeﬁnedrnapmngsbehueentypes bax val asVec = out.viewAs[Vec[UInt]]

bar

for ((field, idx) <- asVec.zipWithIndex) {
field := idx.U

See https://github.com/chipsalliance/chisel3/pull/1955 for docs

https://github.com/chipsalliance/chisel3/pull/1955

AutoCloneType2

Before;

 cloneType is an implementation detail that leaks

)) .. . class MyBundle(w: Int) extends Bundle {
into the user API (since original Chisel)

val foo = UInt(w.W)
e Useless boilerplate override def cloneType = new MyBundle(w).asInstanceOf[this.typel

* Original AutoCloneType works okay but has
some limitations

* Parameters must be defined as “vals”

 Works in typical use cases but not all use cases After:
* Slow

e The Chisel Comp"er p|ug|n NOW generates class MyBundle(w: Int) extends Bundle {
cloneType for all Bundles val foo = UInt(w.W)

* Available in Chisel v3.4.3 (opt-in) ;

* Improved in v3.4.4
* Mandatory in v3.5.0

Community

Continued Growth

Star history

® chipsalliance/chisel3 J
2.0k

Chisel Community Conference
Shanghai, June 2021

03/04/202!

1.5k . ® chipsalliance/chisel3: 1680 ' See talks on
) www.youtube.com/chisel-lang
C
S
5 10k
0.5k

2018 2019 2020 202
Date

Get Involved

Chat with us on Gitter

Chisel Users Community

If you're a Chisel user and want to stay connected to the wider user community, any of the following are great avenues:

¢ Interact with other Chisel users in one of our Gitter chat rooms:

o| Chisel

anielkasza Sep 1519:5

2 use SymbiYosys with Chisel? Is
there a clean way to add assertions that SymbiYosys
will understand?

Jack Koenig @jackkoenig
Tom Alcorn added formal asser, assume, and cover
support to Chisel and FIRRTL coming in 3.4 and has a
repo using it here: https://github.com/tdb-
alcorn/chisel-formal

S 1reply

o FIRRTL

Ask/AnswerQuestionsoni Stack Overflow using the [chisel] tag

e Ask questions and discuss ideas on the Chisel/FIRRTL Mailing Lists:

o Chisel Users

o Chisel Developers

e Followusonour @chisel_lang Twitter Account

Subscribe to our] chisel-lang YouTube Channel

N

i think it uses symbiyosys

a»s Taurusxkyle @Taurusxkyle

"™ Does anyone meet the problem when test the
design, that the reset signal down on the negedge of
the clock, which will cause the the signals add to
design will change on the negedge of the clock if use
the step(1) to simulate. How to deal with this
problem?Thanks.

~.

Chisel

563 subscribers

cHseC

Watch talks on YouTube

Uploads b PLAYALL

Writing a FIRRTL Transform Improving Chisel/FIRRTL. Tester for

HoME vioEos PLAVLISTS CHANNELS DIscussio ABOUT Q

Chisel Introduction Intensive (Beginner Track) - Chisel Commu...
3991 views - 1 year ago

Chick Markley and Edward Wang give a gentle introduction to
the Chisel hardware construction language.

To get started with Chisel, check out the Chisel3 Bootcamp:
- https/github.comyfreechipsproject/c.

‘SUBSCRIBE

Function...

Tools for...

cc

234 views - 6 months ago 234 views - 6 months ago 142 views + 6 months ago 82 views + 6 months ago

161 views - 6 months ago

Questions tagged [chisel]

Chisel is an open-source hardware construction language developed at UC Berkeley that supports advanced hardware design
using highly parameterized generators and layered domain-specific hardware languages.

Learn more... Topusers Synonyms

485 questions ‘ Newest | Active ’ Bountied | Unanswered

More ~ ‘ ‘ £+ Filter

1 IP block generation/testing when using diplomacy. Possible to give dummy node?
Note I've been studying rocket-chip for utilizing diplomacy and | have a decent grasp on the overall structure of how

diplomacy works. (I don't understand it totally, but well enough to create some ...

i chisel rocket-chip asked yesterday

I Steveo |
23 views 194 38

Ask questions on StackOverflow

Extra / Old Slides

Www, Chisg|.

Further Improved Website

Now with a search bar!

0 Chisel/FIRRTL

Chisel3

Resources

FAQ

Cookbooks
General Cookbook
Naming Cookbook

Troubleshooting

Explanations

Motivation

o s I

GitHub B API Documentation

Chisel/FIRRTL Hardware Compiler
ramework

View on GitHub

An Introduct

Chisel (Constructing Hardwarg

Chisel3 || Testers ChiselTest FIRRTL

embedded in the high-level prd
predefined objects, and usage

writing a Scala program that cd

Project-specific documentation

For a tutorial covering both C

For quick reference “How-To"

Diagrammer

Community

Latest API| Docs

chisel3 342

root package

package root

This is the documentation for Chisel.

/ang .0rg

Community page

Chisel Users Community

If you're a Chisel user and want to stay connected to the wider user community, any of the following are great avenues:

* Interact with other Chisel users in one of our Gitter chat rooms:
Chisel
FIRRTL
* Ask/Answer Questions on Stack Overflow using the [chisel] tag
* Ask questions and discuss ideas on the Chisel/FIRRTL Mailing Lists:
Chisel Users
Chisel Developers
* Followusonour @hisel_lang Twitter Account

* Subscribe toour chisel-lang YouTube Channel

Projects Using Chisel/FIRRTL

If you want to add your project to the list, let us know on the Chisel users mailing list!

Chisel

Project Description
Rocket Chip Generator RISC-V System-on-Chip Generator, 5-stage RISC-V Microprocessor

Berkeley Out-of-order Machine RISC-V Out-of-order/Multi-issue Microprocessor

Further Improved Website

Otherwise, it is rewritten to also include the name as a prefix to any signals generated while executing the right-hand- side of the

0 Chisel/FIRRTL ;
val declaration:

Chisel3 class Example2 extends MultiIOModule { Documentatlon examples are
val in = IO(Input(UInt(2.W))) Compiled and run!!!

Resources // val in = autoNameRecursively("in")(prefix("in")(IO(Input(UInt(2.W)))))

FAQ val out = IO(Output(UInt(2.W)))

// val out = autoNameRecursively("out")(prefix("out")(IO(Output(UInt(2.wW)))))
Cookbooks

def inXin() = in * in

General Cookbook

val add = 3.U + inXin()

Naming Cookbook // val add = autoNameRecursively("add")(prefix("add")(3.U + inXin()))

// Note that the intermediate result of the multiplication is prefixed with ‘add’

Troubleshooting

out := add + 1.U
Explanations }

Motivation

Supported Hardware
module Example2(

Data Types input clock,
input reset,
Bundles and Vecs input [1:@] in,

output [1:0] out
Combinational Circuits);
wire [3:0] _add_T = in * in; // @[naming.md 48:20]
wire [3:0] add = 4'h3 + _add_T; // @[naming.md 50:17]
wire [3:0] _out_T_1 = add + 4'h1; // @[naming.md 54:14]
assign out = _out_T_1[1:0]; // @[naming.md 54:7]
endmodule

Operators

Width Inference

Functional Abstraction

Enhanced Signal Naming (from last time)

« Historically Chisel has struggled with

signal naming def func() = {
« Chisel 3.4 has much better naming val x =a + b
val y = x - 3.U
y & Oxcf.U
¥
val result = func() | 0x8.U
out := result
Old* Verilog Chisel 3.4 Verilog
wire [7:0] T 1 = a + b; wire [7:0] result_x = a + b;
wire [7:0] T 3 = T.1 - 8'h3; wire [7:0] result_y = result_x - 8'h3;
wire [7:0] T 4 = T.3 & 8'hcf; wire [7:0] _result_T = result_y & 8'hcf;
assign out = _T_4 | 8'h8; assign out = _result_T | 8'h8;

Refined Signal Naming

» Optional “tap” output
* What should the name of the port be?

class Example(tapWidth: Option[Int]) extends MultiIOModule {

:faoprtport val tap = tapWidth.map { width =>
“tap val port = I0(Output(UInt(width.W)))
« tapPort port := ...

* In 3.4.0, the name was "tap_port” port

* In 3.4.1 on, the name is “tap” }
 Additional improvements to naming

(especially when using recursion) if (tap.isDefined) {

, _ _ val tapPort = tap.get
* Now with ~5 months of use, it's going

great!

Improved Release Methodology

3.2.0

-

Automated Backporting + Cl

Backport

3.2.1

f”
-

s

Backport

-

3.3.0

3.2.x

/
Backport

-

major < master

-~
~ o

Backport

3.3.x

